Contrasting Networks for Recognition Memory and Recency Memory Revealed by Immediate-Early Gene Imaging in the Rat

نویسندگان

  • Cristian M. Olarte-Sánchez
  • Lisa Kinnavane
  • Eman Amin
  • John P. Aggleton
چکیده

The expression of the immediate-early gene c-fos was used to compare networks of activity associated with recency memory (temporal order memory) and recognition memory. In Experiment 1, rats were first familiarized with sets of objects and then given pairs of different, familiar objects to explore. For the recency test group, each object in a pair was separated by 110 min in the time between their previous presentations. For the recency control test, each object in a pair was separated by less than a 1 min between their prior presentations. Temporal discrimination of the objects correlated with c-fos activity in the recency test group in several sites, including area Te2, the perirhinal cortex, lateral entorhinal cortex, as well as the dentate gyrus, hippocampal fields CA3 and CA1. For both the test and control conditions, network models were derived using structural equation modeling. The recency test model emphasized serial connections from the perirhinal cortex to lateral entorhinal cortex and then to the CA1 subfield. The recency control condition involved more parallel pathways, but again highlighted CA1 within the hippocampus. Both models contrasted with those derived from tests of object recognition (Experiment 2), because stimulus novelty was associated with pathways from the perirhinal cortex to lateral entorhinal cortex that then involved both the dentate gyrus (and CA3) and CA1 in parallel. The present findings implicate CA1 for the processing of familiar stimuli, including recency discriminations, while the dentate gyrus and CA3 pathways are recruited when the perirhinal cortex signals novel stimuli.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping parahippocampal systems for recognition and recency memory in the absence of the rat hippocampus

The present study examined immediate-early gene expression in the perirhinal cortex of rats with hippocampal lesions. The goal was to test those models of recognition memory which assume that the perirhinal cortex can function independently of the hippocampus. The c-fos gene was targeted, as its expression in the perirhinal cortex is strongly associated with recognition memory. Four groups of r...

متن کامل

Early and late consolidation and reconsolidation of memory in the prelimbic cortex

Rats can learn to forage among olfactory cues to associate one with reward in only 3 massed trials. The learning is achieved in less than 10 min and results in a memory trace lasting at least 1wk week. To study the neuro-anatomical circuits involved in the memory formation we used immunoreactivity to the immediate early gene c-fos as a marker for neuronal activity induced by the learning. The p...

متن کامل

Early and late consolidation and reconsolidation of memory in the prelimbic cortex

Rats can learn to forage among olfactory cues to associate one with reward in only 3 massed trials. The learning is achieved in less than 10 min and results in a memory trace lasting at least 1wk week. To study the neuro-anatomical circuits involved in the memory formation we used immunoreactivity to the immediate early gene c-fos as a marker for neuronal activity induced by the learning. The p...

متن کامل

Evidence That the Rat Hippocampus Has Contrasting Roles in Object Recognition Memory and Object Recency Memory

Adult rats with extensive, bilateral neurotoxic lesions of the hippocampus showed normal forgetting curves for object recognition memory, yet were impaired on closely related tests of object recency memory. The present findings point to specific mechanisms for temporal order information (recency) that are dependent on the hippocampus and do not involve object recognition memory. The object reco...

متن کامل

Dissociable Temporo-Parietal Memory Networks Revealed by Functional Connectivity during Episodic Retrieval

Episodic memory retrieval most often recruits multiple separate processes that are thought to involve different temporal regions. Previous studies suggest dissociable regions in the left lateral parietal cortex that are associated with the retrieval processes. Moreover, studies using resting-state functional connectivity (RSFC) have provided evidence for the temporo-parietal memory networks tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 128  شماره 

صفحات  -

تاریخ انتشار 2014